RQC Seminar
11th RQC Seminar
講演者
Prof. Anton Frisk Kockum
(Department of Microtechnology and Nanoscience, Chalmers University of Technology.)日程
2022年8月16日(火)16:00-17:00(JST)
開催場所
ハイブリッド(Zoom ・ 理研 和光事業所 本部棟2階大会議室)
講演タイトル
Quantum state and process tomography with machine learning and gradient descent
お問合せ
rqc_info[at]ml.riken.jp
講演概要
The ability to quickly and accurately characterise quantum states and dynamics is crucial for the development of quantum technologies. However, the problem of learning a general quantum state or process has exponential complexity in the size of the quantum system. In this talk, I will present some recent progress we have made for both quantum state and process tomography. For state tomography, I will show how generative adversarial neural networks can outperform standard methods in terms of both the amount of time and data needed [1,2]. For process tomography, I will show how optimization using constrained gradient descent can work both for instances with little data and for larger systems, regimes which previously required two different methods [3].
References
[1] S. Ahmed et al., Phys. Rev. Lett. 127, 140502 (2021)
[2] S. Ahmed et al., Phys. Rev. Res. 3, 033278 (2021)
[3] S. Ahmed et al., in preparation.